Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Phishing is the simplest form of cybercrime with the objective of baiting people into giving away delicate information such as individually recognizable data, banking and credit card details, or even credentials and passwords. This type of simple yet most effective cyber-attack is usually launched through emails,phone calls, or instant messages. The credential or private data stolen are then used to get access to critical records of the victims and can result in extensive fraud and monetary loss.Hence, sending malicious messages to victims is a stepping stone of the phishing procedure. A phisher usually setups a deceptive website, where the victims are conned into entering credentials and sensitive information. It is therefore important to detect these types of malicious websites before causing any harmful damages to victims. Inspired by the evolving nature of the phishing websites, this paper introduces a novel approach based on deep reinforcement learning to model and detect malicious URLs. The proposed model is capable of adapting to the dynamic behavior of the phishing websites and thus learn the features associated with phishing website detection.more » « less
-
With the continued improvement and innovation, technology has become an integral part of our daily lives. The rapid adoption of technology and its affordability has given rise to the Internet-of-Things (IoT). IoT is an interconnected network of devices that are able to communicate and share information seamlessly. IoT encompasses a gamut of heterogeneous devices ranging from a small sensor to large industrial machines. One such domain of IoT that has seen a significant growth in the recent few years is that of the wearable devices. While the privacy issues for medical devices has been well-researched and documented in the literature, the threats to privacy arising from the use of consumer wearable devices have received very little attention from the research community. This paper presents a survey of the literature to understand the various privacy challenges, mitigation strategies, and future research directions as a result of the widespread adoption of wearable devices.more » « less
-
Billions of devices in the Internet of Things (IoT) are inter-connected over the internet and communicate with each other or end users. IoT devices communicate through messaging bots. These bots are important in IoT systems to automate and better manage the work flows. IoT devices are usually spread across many applications and are able to capture or generate substantial influx of big data. The integration of IoT with cloud computing to handle and manage big data, requires considerable security measures in order to prevent cyber attackers from adversarial use of such large amount of data. An attacker can simply utilize the messaging bots to perform malicious activities on a number of devices and thus bots pose serious cybersecurity hazards for IoT devices. Hence, it is important to detect the presence of malicious bots in the network. In this paper we propose an evidence theory-based approach for malicious bot detection. Evidence Theory, a.k.a. Dempster Shafer Theory (DST) is a probabilistic reasoning tool and has the unique ability to handle uncertainty, i.e. in the absence of evidence. It can be applied efficiently to identify a bot, especially when the bots have dynamic or polymorphic behavior. The key characteristic of DST is that the detection system may not need any prior information about the malicious signatures and profiles. In this work, we propose to analyze the network flow characteristics to extract key evidence for bot traces. We then quantify these pieces of evidence using apriori algorithm and apply DST to detect the presence of the bots.more » « less
An official website of the United States government
